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Existence of a phase separation is proved for a classical lattice gas with finite-range
pair potential under the action of a weak gravitational field.
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1. INTRODUCTION

Recently, we uncovered a well-delineated phase separation for a one-dimensional
classical fluid with next neighbor interactions in a weak gravitational field.(2) We
showed that one can identify, with probability tending to one as the size of the
system approaches infinity, three regions: a dense part at the bottom, which we
called the condensate, a dilute part at the top, called the gas, and in between
these two phases an interface whose relative width goes to zero as the number of
particles goes to infinity.

The next step was clearly to drop the next neighbor assumption. The global
effect of weak gravitational forces on the equilibrium structure of hard rods with
finite-range interactions has been studied in Ref. 1. It turned out that the overall
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qualitative behavior we found for the special class of next neighbor interactions
prevails in this more general situation. That is, the phenomenon appears to be
robust with respect to changes in the interactions.

The purpose of the present paper is to extend this work to D-dimensional
space. To allow for the phenomenology without unnecessary structural details, we
consider a particle system in a subset � of the D-dimensional integer lattice Z

D ,
with finite-range forces, and in a weak external (gravitational) field.

More specifically, pick � = ([0, N ] ∩ Z)D , and for a configuration x ∈
{0, 1}� let the potential energy of the system be given by (see, e.g., Ruelle (8))

U�(x) =
∑

i, j∈�,i �= j

V (i − j)xi x j + g
∑

i∈�

i1xi .

The pairwise interaction V is assumed to be finite, attractive, and of finite range
r , so −∞ < V ≤ 0 and V (i) = 0 if ‖i‖ > r (‖ ‖ is the usual Euclidean norm).
Furthermore, we suppose that V is symmetric

V (−i) = V (i), (1.1)

translation invariant, and not identically zero. The second term of the formula for
U� represents the effect of a homogeneous gravitational field of strength g that
exerts its force along the first coordinate. Here we selected units such that the mass
of the particles equals one.

Classical equilibrium statistical mechanics is defined by the finite-volume
Gibbs probability measure P� which assigns to each configuration x ∈ {0, 1}� the
probability (see, e.g., Ruelle (8))

P�(x) = 1

Z�

exp[−βH�(x)]

with

H�(x) = U�(x) − µ
∑

i∈�

xi

and the normalization

Z� =
∑

x∈{0,1}�
exp[−βH�(x)].

The parameter β represents the reciprocal temperature, and µ is to be interpreted
as chemical potential. The chemical potential is used to control the number of
particles. Within the framework of the present article, the number of particles is
close to its expectation with probability approaching one as N tends to infinity.
So, for sufficiently large N , the isothermal measure (see, e.g., Ruelle (8)), which is
obtained by conditioning on the total number of particles, is, essentially, equivalent
to the Gibbs measure with appropriately chosen parameters.
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2. THEOREM

The formulation of our theorem has been inspired by some experimental
evidence due to Pierański.(7) He observed a separation of phases for a classical
system of hard disks under gravity. This says that the general case might not differ
too much from the case without attractive interactions and motivates the following
definition.

For a subset I of � and a given configuration x ∈ {0, 1}I , let

P
0
I (x) = 1

Z0
I

exp
[ − βH 0

I (x)
]

with

H 0
I (x) = g

∑

i∈I

i1xi − µ
∑

i∈I

xi

and again the partition function

Z0
I =

∑

x∈{0,1}I

exp
[ − βH 0

I (x)
]
.

This distribution is very handy, because under this distribution the values xi are
independent with

P
0
I (xi = 1) = pi = 1

1 + exp[β(gi1 − µ)]
.

The two subsystems condensate and gas are defined next. Let us say that a
particle is part of the condensate if it is connected to some other particle and call
an assembly of unconnected particles gas. Here there are at least two reasonable
definitions of what connected should mean. Namely that we can call two particles
connected if they are next neighbors; i.e., their coordinates i and j satisfy ‖i −
j‖ = 1, or we can call them connected if they interact via the attractive tail of the
pair potential; i.e., V (i − j) �= 0.(3) In this fashion we call two particles connected
if ‖i − j‖ ≤ r .

Moreover, consider the boundary of a set I ⊂ � as the set of members of I
that are connected to the outside,

∂ I = {i ∈ I : ∃ j ∈ � \ I : ‖i − j‖ ≤ r},
and introduce a few microscopic sums:

SI (x) =
∑

i∈I

xi ,

TI (x) =
∑

i∈I,
∑

j∈I,i �= j V (i− j)x j �=0

xi ,
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VI (x) =
∑

i, j∈I,i �= j

V (i − j)xi x j ,

and

VI,J (x) =
∑

i∈I, j∈J

V (i − j)xi x j .

Now, we can formulate the following

Theorem. Let β ∈ (0,∞) and ρ ∈ (0, 1) be given and let µ = µN and g = gN

vary with N in such a way that

µN → ∞ and
µN

log N
→ 0,

as well as
µN

gN N
→ ρ.

Then, for any ε > 0 there is a constant M(ε) ∈ (0,∞) such that, for

N1 = βµN − M(ε)

βgN

and

N2 = βµN + M(ε)

βgN
,

with probability tending to one as N tends to infinity, the following conclusions
hold.

(1) All connected subsets I of [0, N1] × [0, N ]D−1 with xi = 0 for all i ∈ I
satisfy |I | < ε log N.

(2) All connected subsets I of [N2, N ] × [0, N ]D−1 with xi = 1 for all i ∈ I
satisfy |I | < ε log N.

(3) For all hypercubes C = ∏D
i=1[ai , ai + l] with ai ∈ [0, N − l], l > Nα ,

α ∈ (0, 1), and C ⊂ [0, N1] × [0, N ]D−1,

SC ≥ (1 − ε)|C |.
(4 ) For all hypercubes C = ∏D

i=1[ai , ai + l] with ai ∈ [0, N − l], l > Nα ,
α ∈ (0, 1), and C ⊂ [N2, N ] × [0, N ]D−1,

(1 − ε)E0
C (SC ) ≤ SC ≤ (1 + ε)E0

C (SC ) (2.1)

as well as

TC ≤ εE
0
C (SC ). (2.2)
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3. REMARKS

(1) For a system of macroscopic size, we see, with high probability, a con-
densed phase at heights below N1 which contains only small bubbles of a
gaseous phase.

(2) At heights above N2, we find a gaseous phase with only small drops of
condensate, and, in addition, we have an approximate barometric equation
(see, e.g., Kittel (5)), because the local density at height i1 is close to pi

which in turn is about exp[−β(gi1 − µ)].
(3) We also see that the density S�/|�| tends to ρ in probability as N → ∞.
(4) The relative width of the interface, i.e., (N2 − N1)/N , goes to zero slower

than 1/ log N as N → ∞. One could achieve a rate O(1/ log N ) just by
letting βµN = c log N , but then one has to bound the exponent α away
from zero, and if βµN is growing even faster, the probability that there
is a particle above N1 + εN tends to zero, so the gas phase disappears
completely. Hence, if we want a gaseous phase, the smallest order that can
be achieved for the relative width of the interface is 1/ log N .

(5) Let us point out that many-particle systems with a density profile going
from minimum to maximum density over a relatively small interval arise
in gravitational astrophysics and space science, as well (see, e.g., Stahl
et al. (9)). There, local particle densities of core-atmosphere type signify
the low temperature phase of a gravitational phase transition. The exis-
tence of a gravitational phase transition has been proved by Kiessling in
1989.(4)

(6) It may also be noted that local thermodynamics is adequate in the presence
of a very slowly varying external field (cf. Percus (6)).

(7) We further observe that our approach to the one-dimensional case uses the
one-sided Boltzmann factor and the fact that the relative distances of the
particles have pleasant stochastic properties.(1,2) These features are not
available in higher dimensions, and consequently a new method of proof
is developed in Sec. 4.

(8) Finally, let us see if our theory can be put into weak quantitative
agreement with Pierański’s results. To present this comparison most
effectively, it will be convenient to consider Fig. 4 from Ref. 7: We
notice, first, that the relative volume has been 1.3 and that 7500 par-
ticles have been used, which translates at once to: ρ = 0.769 and
� = [0, 113] × [0, 85] by means of Pierański’s geometrical setup; sec-
ond, that the values of the parameters β and g have not been specified.
So let us complete our idealization of his system by adopting the sim-
plest possible scaling, i.e., let us pick βµ = log 113 (cf. Remark 4). This
gives βg = 0.054. Then we have from our results that the interface ex-
tends over one fifth of the height of the assembly (1/ log 113 = 0.212)



722 Grill and Tutschka

Fig. 1. Typical isothermal configuration for D = 2, � = [0, 113] × [0, 85], V ≡ 0, ρ = 0.769, and
βg = 0.054.

and is centered at a relative height equal to 0.769. The former expecta-
tion agrees quite well with the configuration depicted in Fig. 4 of Ref. 7,
while the latter expectation overestimates moderately the volume of the
dense phase thereof. It is of course tempting to complement these find-
ings with corresponding simulation results. Figure 1 shows a typical
isothermal equilibrium state of our system on a 86 × 114 rectangle, at
ρ = 0.769, βg = 0.054, and with V taken to be identically zero. One im-
mediately sees that the condensed phase contains bubbles of gas (cf.
part (1) of the theorem) in contrast to the dense phase of the state
represented in Fig. 4 of Ref. 7 where none are visible. This may be
interpreted as a lack of ergodicity of Pierański’s experimental setting.

4. PROOF

Throughout this section, we fix a density and a temperature. The proof of our
theorem works by showing that the general case does not differ too much from the
case without attractive tail. This is the essence of the following

Lemma 1. For any I ⊆ �, A ⊆ {0, 1}I , B ⊆ {0, 1}�\I , and t > 0, we have

P�(AB) ≤ PI (A)P�\I (B) exp(2K |∂ I |),
PI (A) ≤ exp(K t)P0

I (A) + PI (TI > t),

as well as

PI (TI = t) ≤ exp(K t)P0
I (TI = t)

with K = −β inf i V (i)(2r + 1)D.
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Proof: By definition, for each x ∈ {0, 1}�,

H�(x) = HI (x) + H�\I (x) + VI,�\I (x) + V�\I,I (x).

This implies by (1.1)

exp[−βH�(x)] = exp[−βHI (x)] exp[−βH�\I (x)] exp[−2βVI,�\I (x)],

and, using −K |∂ I | ≤ βVI,�\I (x) ≤ 0, we get

Z� ≥ Z I Z�\I

as well as

∑

x∈A×B

exp[−βH�(x)] ≤
(

∑

x∈A

exp[−βHI (x)]

)

×
(

∑

x∈B

exp[−βH�\I (x)]

)
exp(2K |∂ I |),

and these two inequalities together yield the first assertion of the lemma.
The second assertion is proved the same way, taking advantage of the fact

that

PI (A) = PI (A ∩ {TI ≤ t}) + PI (A ∩ {TI > t}) (∗)

and

−βH 0
I (x) ≤ −βHI (x) = −β[H 0

I (x) + VI (x)] ≤ −βH 0
I (x) + K TI (x).

The third assertion is obtained by letting A = {TI = t} in (∗). �

An estimate for the distributions without attractive component is stated next.

Lemma 2. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and P(Xi = 1) = pi . Furthermore, let Y = ∑n

i Xi and m = E(Y ) = ∑n
i=1 pi .

Then there is for any ε > 0 a constant c(ε) > 0 such that

P(|Y − m| ≥ εm) ≤ 2 exp(−mc(ε)).

Proof: For any t > 0, we have by Markov’s inequality

P(Y ≥ (1 + ε)m) ≤ exp(−(1 + ε)mt)E(exp(Y t)) =

exp(−(1 + ε)mt)
n∏

i=1

(1 + pi (exp(t) − 1)) ≤ exp(−(1 + ε)mt + m(exp(t) − 1)).
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Minimizing over t yields

P(Y ≥ (1 + ε)m) ≤ exp[m(ε − (1 + ε) log(1 + ε))].

Alike, we infer

P(Y ≥ (1 − ε)m) ≤ exp[m(−ε − (1 − ε) log(1 − ε))].

The first expression is the larger one, so we get the assertion of the lemma with
c(ε) = (1 + ε) log(1 + ε) − ε. �

Note also that for any given δ > 0, we can choose M(ε) in such a way that
pi is greater than 1 − δ for i1 < N1 and less than δ for i1 > N2.

We are now ready to prove the theorem.
As for part (1) of the theorem, recognize that we can enumerate the connected

subsets I of � of size n by starting from one of its members, listing in lexico-
graphical order all points that are at a distance at most r from it and belong to I ,
and proceed by doing the same for all points in the list until we have enumerated
all the points of I . Thus, the number of connected subsets is the number of choices
that we have to give the intersection of each point’s neighborhood with I . For a
given point, this number of choices is at most the number of all subsets of the
neighborhood, so we find that there are at most 2n(2r+1)D

connected subsets of
� that have size n and contain a given point, and as we have (N + 1)D choices
for the starting point, the number of connected subsets of � of size n is at most
(N + 1)D2n(2r+1)D

. Now, for a given connected subset I of [0, N1] × [0, N ]D−1

with |I | = n, the probability that xi = 0 for all i ∈ I is via Lemma 1

P�(SI = 0) ≤ PI (SI = 0) exp(2K n) ≤ P
0
I (SI = 0) exp(2K n) ≤ (δ exp(2K ))n,

and the probability that SI = 0 for all such I is therefore not greater than

(N + 1)D(2(2r+1)D
δ exp(2K ))n.

If we choose n = ε log N and δ < exp(−2K − ε−1 D)2−(2r+1)D
, then this proba-

bility tends to zero as N tends to infinity, and so the first assertion of the theorem
is proved.

Part (2) of the theorem is proved the same way.
For the proof of part (3), observe that for a given C ⊂ [0, N1] × [0, N ]D−1,

we have through Lemma 1

P�(SC < (1 − ε)|C |) ≤ PC (SC < (1 − ε)|C |) exp(2K |C |)
≤ P

0
C (SC < (1 − ε)|C |) exp(3K |C |).

Applying Lemma 2 to the number of zeros among the xi with i ∈ C , we infer

P
0
C (SC < (1 − ε)|C |) ≤ 2 exp(−ε|C |(log(ε/δ) − 1)).
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If we choose δ < ε exp(−(3K + 2)ε−1), then

P�(SC < (1 − ε)|C |) ≤ 2 exp(−|C |) ≤ 2 exp(−NαD),

and since the number of hypercubes C ⊂ [0, N1] × [0, N ]D−1 is not greater than
(N + 1)D+1, we conclude that P�(

⋃
C {SC < (1 − ε)|C |}) tends to zero as N →

∞. So, part (3) of the theorem is proved.
We finally prove part (4) of the theorem. Define, for every C ⊂ [N2, N ] ×

[0, N ]D−1, i ∈ {0, . . . , r}D , and j ∈ [−N , N ]D ,

RC (i, j) = {(k, l) ∈ C × C : k − l = j, l = i mod (r + 1), V ( j) �= 0}
as well as

WC (i, j) =
∑

(k,l)∈RC (i, j)

xk xl .

Therefore

TC =
∑

i∈{0,...,r}D , j∈[−N ,N ]D

WC (i, j),

so, if TC = n, then there exist i and j such that WC (i, j) ≥ n((r + 1)(2r + 1))−D .
The summands in the definition of WC (i, j) are independent under P

0
C . This implies

that E
0
C (WC (i, j)) is not greater than δ times E

0
C (SC ). Furthermore, for any α′ < α

and N large enough, the latter expectations are all greater than Nα′ D . In particular,
we can choose α′ such that

|∂C | ≤ εE
0
C (SC ).

Assume that n > εE
0
C (SC ). Then Lemma 1 shows

P�(TC = n) ≤ exp(2K |∂C |)PC (TC = n) ≤ exp(K (2|∂C | + n))P0
C (TC = n)

≤ exp(3K n)
∑

i∈{0,...,r}D , j∈[−N ,N ]D

P
0
C (WC (i, j) ≥ n((r + 1)(2r + 1))−D).

Moreover, pick δ < ((r + 1)(2r + 1))−Dεexp[−(3K + 2)((r + 1)(2r + 1))D]. So,
using Lemma 2, we have that P�(TC = n) is not greater than a constant times
exp(−n). And since there are no more than (N + 1)D+1 hypercubes, we con-
clude that the probability that TC > εE

0
C (SC ) for all hypercubes C ⊂ [N2, N ] ×

[0, N ]D−1 tends to zero as N → ∞. This yields (2.2).
In order to prove (2.1), we choose ε′ < (9K )−1ε2 and define events

A = {TC ≤ ε′
E

0
C (SC ) for all C ⊂ [N2, N ] × [0, N ]D−1}

as well as for every C ⊂ [N2, N ] × [0, N ]D−1

BC = {|SC − E
0
C (SC )| > εE

0
C (SC )}.
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What then remains to show is P�(
⋃

C BC ) → 0 as N tends to infinity. But since
we already know that P�(AC ) goes to zero as N goes to infinity, it is enough to
establish P�(

⋃
C A ∩ BC ) → 0 as N → ∞. Now, for a given C ,

P�(A ∩ BC ) ≤ exp[K (2|∂C | + ε′
E

0
C (SC ))]P0

C (|SC − E
0
C (SC )| > εE

0
C (SC )),

and via Lemma 2, we can estimate this from above by 2 exp(−η(ε)E0
C (SC )) with

some η(ε) > 0. Thus

P�

( ⋃

C

A ∩ BC

)
≤ 2(N + 1)D+1 exp(−η(ε)Nα′ D),

and the last estimate tends to zero as N → ∞. This completes the proof of the
theorem.
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